Algebraic entropy, automorphisms and sparsity of algebraic dynamical systems and pseudorandom number generators

نویسندگان

  • Domingo Gómez-Pérez
  • Alina Ostafe
  • Igor E. Shparlinski
چکیده

We present several general results that show how algebraic dynamical systems with a slow degree growth and also rational automorphisms can be used to construct stronger pseudorandom number generators. We then give several concrete constructions that illustrate the applicability of these general results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The concept of logic entropy on D-posets

In this paper, a new invariant called {it logic entropy} for dynamical systems on a D-poset is introduced. Also, the {it conditional logical entropy} is defined and then some of its properties are studied.  The invariance of the {it logic entropy} of a system  under isomorphism is proved. At the end,  the notion of an $ m $-generator of a dynamical system is introduced and a version of the Kolm...

متن کامل

The Algebraic Entropy of the Special Linear Character Automorphisms of a Free Group on Two Generators

In this note, we establish a connection between the dynamical degree, or algebraic entropy of a certain class of polynomial automorphisms of R3, and the maximum topological entropy of the action when restricted to compact invariant subvarieties. Indeed, when there is no cancellation of leading terms in the successive iterates of the polynomial automorphism, the two quantities are equal. In gene...

متن کامل

An Algebraic Approach to the Kolmogorov-sinai Entropy

We revisit the notion of Kolmogorov-Sinai entropy for classical dynamical systems in terms of an algebraic formalism. This is the starting point for deening the entropy for general non-commutative systems. Hereby typical quantum tools are introduced in the statistical description of classical dynamical systems. We illustrate the power of these techniques by providing a simple, self-contained pr...

متن کامل

ON ABSOLUTE CENTRAL AUTOMORPHISMS FIXING THE CENTER ELEMENTWISE

Let G be a finite p-group and let Aut_l(G) be the group of absolute central automorphisms of G. In this paper we give necessary and sufficient condition on G such that each absolute central automorphism of G fixes the centre element-wise. Also we classify all groups of orders p^3 and p^4 whose absolute central automorphisms fix the centre element-wise.

متن کامل

Orbit Growth for Algebraic Flip Systems

An algebraic flip system is an action of the infinite dihedral group by automorphisms of a compact abelian group X. In this paper, a fundamental structure theorem is established for irreducible algebraic flip sytems, that is, systems for which the only closed invariant subgroups of X are finite. Using irreducible systems as a foundation, for expansive algebraic flip systems, periodic point coun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2014